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Abstract
The authors extend the well accepted two-impurity-level model by including
the time-dependent balance equation of the mean electron energy to illustrate
the current instability for an n-GaAs semiconductor device with planar-type
contacts when an ac bias Eac sin(2π fdt) is added to the applied dc bias E0.
To avoid any complications arising from photo-excitation, the authors consider
the device in the dark condition. The authors inspect the instability patterns
either by keeping the magnitude of dc bias and the frequency of ac current
fixed but varying the amplitude of ac bias or by fixing the amplitude and
the frequency of ac bias but changing the dc bias. The results of numerical
simulations are demonstrated in detail and the system’s bifurcating to chaos via
several period-doubling routes can be clearly seen in both cases. The bifurcation
maps described as a function of the ac drive amplitude Eac or the dc electric
field across the sample Edc preserve the main features of the experimental
observations by Aoki (1992 Semicond. Sci. Technol. 7 B474) and Aoki and
Yamamoto (1989 Appl. Phys. A 48 111).

1. Introduction

Transport instabilities in a semiconductor can be well characterized by a nonlinear dependence
of the current density J upon the electric field E . This relation is often non-monotonic and
displays negative differential conductivity (NDC), which leads to an N-shaped or an S-shaped
J (E) characteristic. In general, devices operated in the NDC region are often unstable against
temporal or spatial fluctuations of carrier current density. Examining these instabilities can
improve our understanding of the performances of semiconductor devices.

There exist quite a few experimental and theoretical works on this subject for different
types of semiconductors. For example, instabilities observed and studied in high purity
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Figure 1. The circuit equivalent to the experimental semiconductor device with the planar-type
contacts.

n-GaAs at 4.2 K include the driven chaos induced by periodically modulated bias voltage [1–4],
that by weak perpendicular and/or longitudinal magnetic fields [5–13], and the self-generated
chaos which is observed under dc conditions and is broadly independent of external
conditions [14–24]. We have discussed the magnetic effects in our previous works [25–27].
In this work, we will concentrate on the instability and chaos driven by an oscillating voltage.

Early in 1983, Teitsworth et al [28] reported the experimental discovery of subharmonic
and chaotic behaviours in periodically driven extrinsic Ge photoconductors. The observations
were qualitatively interpreted by a theoretical spatially uniform rate-equation model with a
time-dependent current produced by modulated far-infrared (FIR) illumination [29]. Also,
Aoki et al have investigated periodically driven oscillatory instabilities on n-GaAs [1–4].
Under the so called dark condition (for which external light is completely shielded) at 4.2 K,
the I –V curve of the n-GaAs exhibits a dc stable hysteresis. The nonlinear response of a
periodically driven current instability has been investigated by applying a dc + ac bias. With the
amplitudes larger than the hysteresis width, they observed various types of frequency locking
and chaos when the load line was biased in the hysteresis region [2–4]. The period-doubling
bifurcations were found by varying either the magnitude of the dc bias or that of ac bias.
They employed a phenomenological one-level impact-ionization model [30–32] to study these
findings theoretically. In an alternative way, we would like to adopt Scholl’s two-impurity-level
model, with the assumption of spatial homogeneity, to discuss the driven instability phenomena
at helium temperatures.

Our computer simulation for the experimental equivalent circuit shown in figure 1 with
ac bias will be briefly described in section 2. Because Schöll’s two-level model can capture
the essential features of SNDC well, we adopt this model to examine ac driven instability.
The governing dynamic equations are basically the same as the previous model. For a more
accurate description of the SNDC model, we employ the field-dependent and density-dependent
electron mobility and furthermore write it in the phenomenological form. We also adopt the
energy balance equation, and take into account the temperature dependence of the generation–
recombination (GR) coefficients. This is because the presence of impurities plays a crucial role
in causing SNDC. At helium temperature the binding energies of the impurities for free carriers
are larger than their thermal energy. Thus, all of the carriers tend to be trapped by the impurities.
Although thermal ionization of the electrons in the impurity sites to the conduction band is not
possible, the trapped electrons can be ionized to the conduction band by the accelerated free
electrons that are driven by an external electric field (called impact ionization). Therefore, the
free carriers may be captured by the ionized impurity sites or be generated through the impact
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ionization upon the trapped electrons. Based on the above arguments, the transport properties of
semiconductors are seriously affected by the generation and recombination of the free carriers
between the conduction band and the impurity levels. The impact ionization coefficients X1

and X∗
1 as well as the capture coefficient T S

1 have been calculated from Monte Carlo simulation
by Scholl’s group [33, 34] and furthermore expressed in terms of the electron temperatures and
carrier density by fit functions. For the impact ionization coefficients we basically adopt the
lucky-electron model [35] and express the dependence of the impact ionization coefficients
upon the electron density and electric field through the electron temperatures and electric
field. For the capture coefficient T S

1 , a form similar to that in [34] has been used to reflect
the enhancement characteristic near the breakdown field where the low frequency oscillations
are expected.

Since the current filament is dc unstable under weak photo-excitation, to avoid further
complications, here we consider the device at the dark condition so that the oscillatory
behaviour under photo-excitation can be ignored. Based on the theoretical formulation, the
numerical simulations are performed. We either keep the magnitude of the dc bias and the ac
frequency constant but vary the amplitude of the ac bias, or fix the amplitude and the frequency
of the ac bias but alter the dc bias to examine the instabilities. From our simulations under
these two circumstances, we do obtain oscillatory instabilities bifurcating to chaos, as will be
displayed in section 3 in detail. Simulation results presented here in phase portraits, in power
spectra, and in bifurcation maps show a period doubling cascade to chaotic oscillation for
increasing sinusoidal drive amplitude Eac and dc bias E0.

2. Model

In the two-impurity-level model for n-GaAs, the carrier density n in the conduction band is
governed by the generation–recombination (GR) process in which an electron in the ground or
the first excited state of the impurity may be thermally or impact ionized to the conduction band
and may then recombine with a donor having an empty state [14, 36]. The electron density n
in the conduction band, the ground level density nt1 and the first excited level density nt2 can
be expressed through the GR rate equations

ν̇ = φ(ν, νt1 , νt2 , E) (1)

ν̇ti = φti (ν, νt1 , νt2 , E), i = 1, 2 (2)

with ν = n/N∗
D, . . ., etc, N∗

D = ND − NA being the effective doping concentration, ND, NA the
donor and the acceptor concentrations respectively, E the electric field, and the dot denoting
the time derivative. The rate functions φ and φt1 can be written as [14, 37]

φ(ν, νt1 , νt2 , E) = X1 N∗
Dννt1 + (Xs

1 + X∗
1 N∗

Dν)νt2 − T s
1 N∗

D(NA/N∗
D + ν)ν, (3)

φt1(ν, νt1 , νt2 , E) = −(X∗ + X1 N∗
Dν)νt1 + T ∗νt2 , (4)

with νt2 = 1 − ν − νt1 from the conservation of charge. Hence in an explicit GR model for low
temperature n-type GaAs, the transition rates φ, φt1 , and φt2 between the levels must satisfy
φ + φt1 + φt2 = 0. The magnitudes of the GR coefficients at 4.2 K, liquid-helium temperature,
are given in table 1. These coefficients may vary with various factors, such as changes of the
electron temperature Te, applications of external electric field, and so on.

Let us consider the experimental equivalent circuit shown in figure 1 where a static and an
ac oscillating electric field are applied in the x direction, Es = (E0 + Eac sin(2π fdt))x̂. Except
this, no magnetic or any other field is present. The ac electric field gives rise to an oscillator
impedance Z . Consequently, in the presence of the oscillator the impedance of the equivalent
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Table 1. The parameter values corresponding to n-GaAs at 4.2 K for the two-level generation–
recombination model studied in this paper.

Parameter Value

T ∗ 3.45 × 106 s−1

Xs0
1 6.9 × 105 s−1

X∗ 1.03 × 106 s−1

X0
1 6.9 × 10−7 cm3 s−1

X∗0
1 1.38 × 10−5 cm3 s−1

l 1.0 × 10−3 cm
e1 6.6 × 10−7 cm3 s−1

g1 8.0 × 10−6 cm3 s−1

(e2, e3) (2.3,−0.095)

(g2, g3) (−0.265, 1.254)

(νth, q1) (0.07, 0.693)

NA/N∗
D 0.3

r2 2.3
μ0 2.5 × 104 cm2 V−1 s−1

vs 1.25 × 105 cm s−1

TL 4.2 K
β2

0 3 × 102

ν0 5.75 × 10−3

N∗
D 2.5 × 1014 cm−3

τ0 6.3 × 10−11 s
1/γd 9.1 × 10−7 s

circuit becomes Zeq = RL + Z with RL the load resistance. The dynamical equation for the
drift electric field, E = E x̂, can be written as

Ė = −γd

(
−Es + E + AZeq

L
J

)
(5)

with the current density

J = eνN∗
Dvd (6)

where 1/γd is the effective dielectric relaxation time, and L and A are, respectively, the
separation between contacts and the cross-sectional area of the sample. In the above equation,
vd is the drift velocity of the electrons and is generally written as

vd = μE . (7)

On the lower branch of the S-shaped n(E) characteristic, the velocity is modelled by the
empirical saturable form vd(E) = vs arctan(r2 E) with the saturated drift velocity vs and the
saturation parameter r2 and the mobility μlo is written as [19, 38]

μlo(E) = vd(E)

E

= vs
arctan(r2 E)

E
. (8)

On the high conductivity branch of the S-shaped n(E) characteristic, an obvious increase
of Te with rising electric field, scattering is predominant. The electron mobility μup with density
n at temperature Te is given by the Brooks–Herring (BH) formula [39]

μup(Te, ν) = μBH(Te, ν)

= μ0

(
Te

TL

)3/2 g(β0, ν0)

g(β, ν)
, (9)
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with

g(β, ν) = (2NA/N∗
D + ν)(ln(1 + β2) − β2/(1 + β2)),

β2 = β2
0

(
Te

TL

)2
ν

ν0
,

where the dimensionless electron density ν0 = n0/N∗
D, and n0, μ0, and β0 are the electron

density, the electron mobility, and the so-called BH coefficient, respectively, under zero
electric field at TL. The transition from μlo to μup at a certain threshold electron density νth

corresponding to the largest value of ν on the lower branch may be described by saturated drift
velocity. Therefore the mobility covering the entire range in ν is represented by

μ(Te, E, ν) = 1
2 {[μlo(E) + μup(Te, ν) + [μlo(E) − μup(Te, ν)] tanh[(2 log10(νth/ν)]} (10)

For a more accurate description of the two-level model, we consider the energy balance
equation. During the GR processes the electron temperature Te will increase and can be
determined through electron mean energy E = 3

2 kBTe, with kB being the Boltzmann constant.
E is directly related to the electric field E via the energy balance equation [40]

Ė = −(E − EL)/τ (E) + eμE2 (11)

where EL = 3
2 kBTL is the thermal energy at zero electric field with the lattice temperature TL,

and τ (E) ∝ E−1/2 the energy relaxation time considered theoretically. In line with our previous
works [26, 27], equation (11) is also converted to [32]

˙̄Te = − 1

τ0
[T̄e

1/2
(T̄e − 1)] + 2e

3kBTL
μE2 (12)

with T̄e = Te/TL, and τ0 the energy relaxation time constant.
On the upper branch, the drift velocity increases obviously as a result of the sharp increase

of the electron temperature and density. Since Te can be determined from the energy balance
equation equation (11) or (12) and ν is related to the electric field by GR rate equations (1)
and (2), our μBH in equation (9) used to express the enhancement of the mobility on the upper
branch of the n(E) characteristic is dependent on the electric field implicitly. Thus solving
the coupled differential equations (1), (2), (5), and (12) enables us to examine the cross-over
instability for n-type GaAs due to the effects from the electric field E including the oscillating
ac field, our present main interest, and the carrier temperature Te variation.

An essential part of the two-level model is the generation and recombination of the free
carrier between the conduction band and the impurity levels. Besides explicitly appearing in the
differential equations, the electron density and electric field may also implicitly be embedded
in the GR coefficients. We apply Schöll’s group’s works [33, 34] to account for the GR
coefficients’ electric field and electron density dependence, as to be briefly described in the
following.

For the impact-ionization coefficients X1 and X∗
1 , basically we adopt the electric field and

binding energy dependent lucky-electron model [35]. But as E goes higher than the breakdown
field, these X1 and X∗

1 behave differently towards Te [33]. Since both Te and X1 show similar
behaviours as E varies [33, 34], a factor δ(Te) is multiplied to the cross section of X1 when the
temperature increases,

δ(Te) = 1 + λTe/TL, (13)

where λ is an adjustable parameter and is taken to be 0.06. Therefore X1 becomes

X1(E, Te) = δ(Te)X0
1e−εb/elE . (14)
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On the other hand, because the excited state’s ionization energy is much smaller than the ground
state’s, X∗

1 shows a very weak dependence on Te [33]. Hence we keep X∗
1 the same form as

that in the lucky-electron model [35],

X∗
1(E) = X∗0

1 e−ε∗
b/elE , (15)

with coefficients X0
1 and X∗0

1 and mean free path l being given in table 1, and εb = 6.0 and
ε∗

b = 1.5 meV the impurity ground and first excited state binding energies for n-GaAs.
Generally, the capture rate decreases monotonically with the field except at the onset of

the upper branch, where T s
1 increases because strong impact ionization scatters many carriers

back to the band minimum, from where they can recombine with high probability. The capture
coefficient T s

1 is represented by [34]

T s
1 (Te, ν) = 4

5 T s,lo
1 (Te) + 1

2 {[T s,up
1 (Te) + T s,lo

1 (Te)] + [T s,up
1 (Te)

− T s,lo
1 (Te)] tanh[log10(ν/νth)

0.8]},
T s,up

1 (Te) = e1 exp[e2(Te/TL − q1)
e3 ],

T s,lo
1 (Te) = g1 exp[g2(Te/TL)

g3 ]
(16)

with parameters νth, q1, ei , gi , i = 1, . . . , 3, being defined in [34].
On the part of the thermal ionization coefficient Xs

1(Te), we take into account the effect of
the Boltzmann factor and write it as

Xs
1(Te) = Xs0

1 eε∗
b (1/kBTL−1/kB Te), (17)

where Xs0
1 is the thermal ionization coefficient at lattice temperature TL.

3. Simulations and numerical results

We now represent the results of numerical simulations for the two-impurity-level model
with the field-dependent and temperature-dependent electron mobility and GR coefficients, to
describe the experimental measurements [1–4] performed at 4.2 K under dark conditions for a
high purity n-GaAs with a typical rectangular cross-section area A = 1.8 × 10−4 cm2, and the
spacing between the planar-type contacts L = 2.5 mm.

We first solve equations (1), (2) and (12) under their stationary state conditions (ν̇ =
ν̇t1 = ˙̄Te = 0), making use of the E- and Te-dependent GR coefficients mentioned in the
previous section. We then obtain the static S-shaped J–E characteristic as shown in figure 2(a).
Referring to the reasonable material parameters for n-type GaAs [14, 34], the numerical
parameters used in the calculation are tabulated in table 1. As a dc bias voltage V0 is applied
across a series resistance of the GaAs sample and a load resistor RL, a specified load line is
determined by J = (E0 − E)/d , with d = ARL/L, E0 = V0/L, and E = V/L, V being
the voltage across the sample. The slope of the load line, dJ/dE = −1/d , remains a constant
once RL is specified, but the position of the horizontal intercept varies with the applied field E0

(or with the dc bias voltage V0). Hence by setting RL = 500 � in our numerical simulations
we have the load-line condition as d = 0.36 cm V A−1. The load line is biased on the upper
branch or lower branch or in the NDC region of the J–E curve, showing no spontaneous
relaxation oscillation. The stable hysteresis is formed as shown in figure 2(b) if J is assumed
homogeneous over the sample’s cross section A.

Steady-state solution of the drift velocity is shown as a function of E in figure 2(c). The
drift velocity vd generally increases with the field E . A strong increase of vd with rising
electric field occurs on the high conductivity branch as opposed to only a slight increase on
the low conductivity branch. The remarkable increase in vd on the upper branch is apparently
caused by the screening effect of the ionized impurity scattering in the BH mobility formula (9).

6
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Figure 2. The J –E characteristic (a), the corresponding I–V curve (b) for an S-shaped NDC GaAs,
when it is connected in series with a dc bias and a load resistor, and the drift velocity vd (c). In (a)
the dotted line denotes a load line with the load line condition d∗ = AZeq/L = 4.32 cm V A−1.

This reveals the same trend as the simulated drift velocity in [33] and keeps a consistent
characteristic of the anomalously high mobilities observed inside the current filaments in n-
GaAs, as compared to the much lower mobilities outside [41].

Now turn on the ac bias so that the electric field across the GaAs sample and the load
resistor RL is Es = E0 + Eac sin(2π fdt). The impedance of the equivalent circuit Zeq now
includes RL and the oscillator impedance Z . Choosing Z ∼ 5.5 k�, we have Zeq = 6 k�.
Consequently, in the presence of the oscillator (ac bias), the load line becomes E = E0 − d∗ J
with the load line condition d∗ = AZeq/L = 4.32 cm V A−1. Therefore, we pick up the
operating point (Ei , Ji ) from the intersection of the J–E characteristic with the load line, as

7
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the dotted line shown in figure 2(a) with the intersection at E0 = 5.599 985 V cm−1 biased in
the NDC region of the J–E characteristics. The system is stable without ac bias.

Since the energy relaxation time τ0(∼10−10 s) is shorter than the effective dielectric
relaxation time 1/γd(∼1 μs), the energy balance assumes a quasi-steady state almost
instantaneously, determining E(Te) as a function of the electric field E , which varies slowly
according to equation (5), and the dynamics is dominated by the dielectric field relaxation.
By specifying fd = 5.5 × 105 Hz and increasing gradually the magnitude of the amplitude
of the ac bias Eac from 0.8 to 0.975 V cm−1 when solving equations (1), (2), (5), and (12),
we are able to see the period-doubling chaotic bifurcation sequence as shown in figures 3(a)–
(e). Plotted in the left column of figures 3(a)–(e) are the phase portraits of the conduction
electron concentration ν versus the electric field E for period 1, period 2, period 4, period
8, and chaos with Eac set to be 0.8, 0.9, 0.94, 0.944, and 0.945 V cm−1, respectively. Their
corresponding Fourier power spectra of ν(t) are shown in the right column of figures 3(a)–
(e), where a clear peak at f = fd can be seen from the right part of figure 3(a) for a
period-1 limit cycle. Increasing Eac slightly makes it bifurcate to period-2 oscillation with a
subharmonic component at fd/2, and then period-4 oscillation with an additional subharmonic
component at fd/4, as in figures 3(b) and (c), respectively. At Eac = 0.944 V cm−1 a period-
8 oscillation arises, as in the power spectrum of figure 3(d), and subharmonic components
at fd/2, fd/4 and fd/8 can be clearly seen. Finally, chaos appears in figure 3(e) when Eac

is raised to or beyond 0.945 V cm−1. The above described behaviours as a function of Eac

in the NDC regime are clearly displayed in the bifurcation map as shown in figure 4, where
νmax is the maximum value of the electron density for the conduction band. In the map,
the oscillations with more periods appear in a shorter interval of Eac, for example, period-2
oscillations existing in 0.885 V cm−1 � Eac < 0.924 V cm−1, period-4 oscillations existing
in 0.924 V cm−1 � Eac < 0.943 V cm−1, while period-8 oscillations in a much shorter one,
0.943 V cm−1 � Eac < 0.945 V cm−1. Each figure in figures 3(a)–(e) is a chosen example in
each corresponding interval. Beyond the appearance of chaos, further increasing Eac to around
0.967 V cm−1, we also obtain period-5 oscillations. The bifurcation pattern described here is
similar to that observed in [3].

To show the rich structure of the bifurcation routes to chaos in the NDC region of the
J–E curve and to give a more intuitive understanding, we also choose the dc electric field
across the sample Edc, related to the applied static electric field E0 as Edc = E0 − d∗ J , as the
control parameter, while Eac and fd are kept as constants. With an appropriate dc bias E0 in
the NDC branch of the J–E curve, we can find the stable operating point as stated previously,
and Edc can thus be determined. In our numerical simulation, we have the magnitude of Edc

varied from 3.6375 to 3.6477 V cm−1 with the same load-line condition d∗ = 4.32 cm V A−1.
Equations (1), (2), (5), and (12) are now solved by fixing the amplitude Eac at a relatively large
value of 0.945 V cm−1 and driving frequency at fd = 5.5 × 105 Hz. The results are plotted
in figure 5, with νmax being defined in the same way as that in figure 4. In the figure, we can
clearly see the de-stability of the period-1 limit cycle via bifurcation to chaos as the control
parameter Edc varies. Our bifurcation map shown in figure 5 is similar to the one observed
experimentally in [4].

4. Conclusion

Nonlinear instabilities induced by oscillating voltages imposed on semiconductor devices have
been observed experimentally. Studying the rich structures of such phenomena can give us
a better understanding on the performance of the semiconductors. In this work, we extend
the two-impurity-level model by including the time-dependent balance equation of the mean

8
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Figure 3. Left column, phase portraits of the conduction electron concentration ν(t) versus the
electric field E(t); right column, power spectrum S( f ) of ν(t) for the driving frequency fd =
5.0 × 105 Hz and five increasing drive amplitudes: (a) Eac = 0.8 V cm−1, (b) Eac = 0.9 V cm−1,
(c) Eac = 0.94 V cm−1, (d) Eac = 0.944 V cm−1, and (e) Eac = 0.945 V cm−1.

energy per carrier to inspect theoretically the driven instability from the n-GaAs semiconductor
device with the planar-type contacts as shown in figure 1 under the series connection of the ac
and the dc sources. The effects from the electric field and the electron temperature variation on

9
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Figure 3. (Continued.)

Figure 4. Bifurcation map of the conduction electron concentration maxima νmax versus the ac drive
amplitude Eac, for the dc bias E0 = 5.599 985 V cm−1.

the rate equations and the GR coefficients are taken into account here. Two different functions
μup and μlo have been used to express the enhancement of the mobility on the upper branch,
where μup is supported by the BH formula to take into account the screen effect of the ionized-
impurity scattering, and μlo is retained in the empirical saturation form. To proceed with

10
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Figure 5. Bifurcation map of the conduction electron concentration maxima νmax versus the dc
electric field across the sample Edc, for the ac bias amplitude Eac = 0.945 V cm−1 and the
frequency fd = 5.5 × 105 Hz.

numerical simulations, we first find the stable hysteresis loop (I –V curve) under the dc bias
and the dark conditions. In order to observe chaos, we set the amplitudes of the ac voltage
to be larger than the hysteresis width and appropriately bias the load line in the hysteresis
region to choose the operation points which are stable without ac bias. We then solve the
coupled differential equations of the GR rate equations, the energy balance equation, and the
dynamic equation for the drift electric field. The numerical computations are performed under
the schemes of (i) keeping the dc voltage and the ac frequency constant but gradually adjusting
the ac amplitude and (ii) fixing the amplitude and the frequency of the ac source and varying
the dc voltage. For both schemes, we can obtain clear current oscillating to chaos via period
doubling routes. We demonstrate the results in phase portraits and their Fourier power spectra
as well as bifurcation maps in details. Our results preserve the main features of experimental
observations [1–4]. Aoki et al have used the feature that the system undergoes period-doubling
bifurcations to chaos under dc + ac bias to propose novel applications such as a deterministic
noise amplifier and a chaos memory device [42–44]. Our model shows a smooth period-
doubling bifurcation as a function of Eac and that of Edc, but still has some discrepancies in
comparing with the experimental result, which has more complicated routes to chaos than the
result of our simulation. Further detailed analysis on electronic turbulence requires progression
of the spatiotemporal model simulation. We are currently heading in this direction.
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